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1. Modeling Random Events

Mathematical Model. A mathematical model is intended to capture important prop-
erties of a real-world phenomenon of interest without necessarily catching all of the fine
details. It is important to distinguish between a model and the reality which it is supposed
to represent.

Models are justified after-the-fact, by how well they explain and predict the measured
real-world behavior of the phenomenon. Models can be either deterministic, in which case
they attempt to provide perfect predictions of a phenomenon, or random (or stochastic),
in which case they attempt to model phenomena which have an intrinsic unpredictable
variability. Phenomena of the latter type are referred to as random or stochastic phenomena.

Ockham’s Razor.1 This principle, also known as the Principle of Parsimony, says that
given two equally good models one should choose the simpler one. Think of the “razor”’s
job as one of shaving off unnecessary complications in a theory.

1Named after William of Ockham, a medieval English scholastic philosopher of the fourteenth century. He
said that “entities are not to be multiplied beyond necessity,” meaning that philosophical explanations should
be kept as simple as possible. A good introduction to Ockham and his philosophical contributions can be
found in A History of Philosophy, Volume III: Late Medieval and Renaissance Philosphy; Ockham, Francis
Bacon, and the beginning of the Modern World, Frederick Copleston, Image Books/Doubleday, 1953/1993.
The Principle of Parsimony has also been articulated by many others, from Aristotle to Einstein.

1
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Theory of Probability. A mathematical theory which enables us to make predictions
about the likelihood and frequency of occurrence of outcomes of a random event. Note that
this theory requires clear definitions of the terms “outcome” and “random event.”

Random Trial or Experiment. An experimental measurement of some random phe-
nomenon of interest whose outcome cannot be predicted exactly in advance. It is usually as-
sumed that the trial/experiment is repeatable under similar conditions, in which case lack of
predictability is reflected in variations of the measurements from experiment-to-experiment.

Experimental Outcome or Sample Point, ω. The measurement value of a single
trial/experiment. This value is usually denoted by the Greek letter ω, η, or ζ.

Sample Space, Ω or S. Also known as the Universal Set of possible experimental out-
comes. The Sample Space Ω (also often denoted as S). is the set of all possible sample
points (experimental outcomes) ω of an experiment/trial of interest. Any outcome of the
experiment must be one of the points of Ω and one and only one of the outcomes in Ω must
occur.

For example, if a toss of a 6-sided die is our experiment/trial and we assume the sample
space to be comprised of outcomes corresponding to each of the possible face-up positions,

Ω1 =
{

1 , 2 , 3 , 4 , 5 , 6
}
,

then we do not admit the possibility of the die landing on an edge or corner. If these are to
be admitted as experimental possibilities, then the sample space must be modified to reflect
this fact,

Ω2 =
{

1 , 2 , 3 , 4 , 5 , 6 , E , C
}
.

Thus in order to construct the sample space, Ω, it is assumed in advance of performing
an experiment that we know all possible outcomes. (Of course, because the experiment
is random, we don’t know which of the known possible outcomes in Ω will arise when the
experiment is actually performed.) Note that the sample space is not uniquely defined as
it can be larger than strictly needed. For example, both of the sample spaces Ω1 and Ω2

will suffice for an experiment for which one, and only one, of the six sides of a die will be
observed.2

The set Ω is a finite sample space when it contains a finite number of outcomes. If Ω is
not a finite space, then Ω is said to be an infinite sample space. When Ω contains a finite
or denumerable (countably infinite) number of outcomes, we say that Ω is a discrete sample
space. If Ω is not discrete, we say that it is a continuous sample space.

2Of course, if we know this to be the case, Ockham’s razor would lead us to prefer a model base on the
use of Ω1.
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Realization. Given an experiment with a sample space (universal set of outcomes) Ω,
according to our theory a single outcome in Ω must occur when an experiment is actually
performed. Let the experiment be performed; the actual outcome, ω ∈ Ω, which is observed
to occur is called a realization of the experiment.

Elementary Random Event. When an experiment results in a realization ω we say
that the elementary event {ω} has occurred. Am elementary event, then, is a singleton set
{ω} ⊂ Ω, where ω is an experimental outcome (sample point) in the Sample Space, ω ∈ Ω.
A common abuse of notation is to refer to the sample point ω as an ‘elementary event,”
when, strictly speaking, it is {ω} which is the object being referred to.

General Random Event, A ⊂ Ω. A Random Event, A, is associated with a random
experiment with Sample Space Ω. An event A corresponds to a proposition,3 α(ω), about an
experimental outcome, ω ∈ Ω, that has a ‘true’ or ‘false’ answer depending on the outcome.
It is assumed that the truth value of the proposition α(ω) can be ascertained for every
experimental outcome in Ω. The event A occurs precisely when the proposition is true, so
that A is a subset of the sample space Ω,

A = {ω |α(ω)} = {ω | the proposition α(ω) is true} ⊂ Ω .

Note that by definition ω ∈ A if and only if α(ω) is true.4

For example, in the case of the 6-sided die discussed above, consider the event Aeven
defined by the logical proposition,

α(ω) = “the number of face-up dots for the outcome ω is even”.

In this case the event is obviously a subset of Ω given by the following set of outcomes,

Aeven =
{

2 , 4 , 6
}
⊂ Ω .

Note that for a subset A to be an event, there must be an equivalent logical proposition
which (i) can be applied to every outcome in A; and (ii) is true for every outcome in A. As
a consequence the sample space, Ω, and the empty set, ∅, are events,

Ω = {ω |α(ω) = “ω is an admissible experimental outcome”} ,

∅ = {ω | ¬α(ω) = “ω is not an admissible experimental outcome”} .
Note that the truth value of these propositions can be ascertained for every outcome. For
every outcome α(ω) evaluates as true (and hence Ω is the set of all outcomes) and ¬α(ω)
(‘not α(ω)’) evaluates as false (and hence ∅ has no elements). We can think of the event Ω
as the event “something happens”5 and ∅ as the event “nothing happens.”6

3I.e., a logical fact or statement.
4An Elementary Event {ζ}, as defined previously, is the random event associated with the elementary

proposition, α(ω) = “the experimental outcome ω is equal to the sample point ζ.”
5That is, Ω is the event “one of the possible experimental outcomes occurs,” which is true.
6That is, ∅ is the event “none of the possible experimental outcomes occurs,” which is false.
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Boolean Algebra, σ-Algebra of Events. For two logical propositions about an ex-
perimental outcome ω, α(ω) and β(ω), let ‘α(ω) ∨ β(ω)’ correspond to logical ‘or’ (logical
disjunction) and let ‘α(ω) ∧ β(ω)’ correspond to logical ‘and’ (logical conjunction). Let the
proposition ‘not α(ω)’ (logical negation) be denoted by ‘¬α(ω).’ The logical propositions
obey the rules of boolean logic and form a mathematical structure known as a boolean alge-
bra.7 Note that if α(ω) and β(ω) are logical statements (propositions) which can be applied
to every outcome in Ω, then so are the propositions α(ω) ∨ β(ω), α(ω) ∧ β(ω), and ¬α(ω).
Thus if there are events which correspond to α(ω) and β(ω), there must also be events
corresponding to the conjunction, disjunction, and negation of these events.

Let A be a nonempty class of subsets of a Sample Space, Ω, and assume that every
element of A is an event (and hence must each correspond to a logical proposition which
can be applied to all outcomes in Ω). Now let A and B be events in A corresponding to the
logical propositions α(ω) and β(ω) resepectively. From our discussion above, it must be the
case that the sets,

A ∪B = {ω |α(ω)} ∪ {ω | β(ω)} = {ω |α(ω) ∨ β(ω)} ,

A ∩B = {ω |α(ω)} ∩ {ω | β(ω)} = {ω |α(ω) ∧ β(ω)} ,
and8

A′ = {ω |α(ω)}′ = {ω | ¬α(ω)} ,
are also events (subsets of Ω). However, in general these sets might not belong to A.
Henceforth, we make the assumption that, in fact, they do belong to A and that this is true
for all sets A and B in A.

This assumption corresponds to requiring that A be closed under a finite number of set
operations (intersection, union, and complementation), and makes A a boolean algebra, just
like the set of underlying logical propositions. In fact, one can view the two boolean algebras
(one, an algebra of propositions, the other, an algebra of subsets) as essentially equivalent
because of the one-to-one relationship between an event-set and an event-proposition.9 To
reiterate, closure ensures that if A and B are events in a boolean algebra, A, of event subsets
of Ω, then so are A ∪ B, A ∩ B, and A′. Also, if A belongs to A, then so must A ∪ A′ = Ω
and A∩A′ = ∅, showing that every nonempty boolean algebra of subsets of Ω must contain
both Ω and the empty set, ∅.

Because of the equivalence between events, A, and logical propositions, α(·), usually no
care is taken to distinguish them and we treat A as the logical proposition α(·) itself—we can

7Which you should know either from courses in digital logic or CSE20.
8For A a subset of Ω, A′ denotes the set complement of A in Ω, A′ = Ω \A.
9This correspondence is known as Stone’s Theorem and is the reason Venn diagrams work—areas in the

plane are point sets which we interpret as events corresponding to logical propositions. To emphasize the set-
theoretic properties of closure under finite unions and intersections one can speak of a field of sets. However,
we prefer to emphasize the (equivalent) boolean algebra interpetation as is done in many presentations. (See,
for example Artificial Intelligence: A Modern Approach, 2nd Edition, S. Russell and P. Norvig, Prentice-Hall,
2002, or Introduction to Probability Theory, K. Ito, Cambridge University Press, 1978).
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think of the event A as an “event-proposition.” Note, that if A and B are event-propositions
in a boolean algebra A then A ∪ B is the event-proposition “A or B”, A ∩ B is the event-
proposition “A and B”, and A′ is the event-proposition “not A’, and these event-propositions
must also be in the boolean algebra A because of closure under countable set operations. In
summary:

Boolean Algebra of Events. A boolean algebra of events, A, is (i) a class of subsets of
the sample space, Ω, which (ii) is closed under a finite number of set operations.
Assuming that it is nonempty, it must contain the sample space, Ω, and the
empty set, ∅.

More generalize, we need A to be closed under a countable number of set operations. It
can be shown that this corresponds to requiring that the conditions for a boolean algebra
be strengthened by requiring closure under countable set unions, A ∪B ∪ C ∪ · · · . Because
an alternative notation for the required set union property is closure of A+B + C + · · · , a
boolean algebra A which has this additional property is known as a σ-algebra (as the Greek
letter σ corresponds to the roman letter s, which in turn stands for summable).10

σ-Algebra of Events. A σ-algebra of events, A, is (i) a class of subsets of the
sample space, Ω, which (ii) is closed under a countable number of set operations.
Assuming that it is nonempty, it must contain the sample space, Ω, and the
empty set, ∅.

2. Probability Space

Kolmogorov Probability Axioms.11 In the axiomatic approach to probability theory (see
the discussion given below), we assume the existence of a probability function and justify its
correctness after the fact via systematic testing and validation. A probability function (also
known as a probability measure) is a set-function, P (A), which maps events, A ⊂ Ω, to the
nonnegative real numbers. It is assume that the probability measure satisfies the following
three axioms.12

10In our course we will take A+B to be synonymous with the standard set-union operation so that A∪B,
A + B = A ∪ B for all A and B. However the “+” notation can be confusing. This is particularly true
because some people make the addition assumption that A+B means that A and B are disjoint. However,
we don’t make any such assumption and A+B for us is just the standard set-union operation.

11Andrei N. Kolmogorov (1903–1987), was a brilliant Russian mathematician and physicist who made
important, original contributions to probability theory, random processes, information theory, complexity
theory, mechanics, fluid dynamics, and nonlinear dynamical systems theory. He proposed the axiomatic
approach to probability in 1933, when he has 30 years old. He is a giant of the 20th century.

12Instead of applying the axioms to the event sets, A, (as is the usual case in engineering and mathematical
analysis) one instead can equivalently apply them to the underlying logical propositions, α(ω). This is done,
for instance in the CSE150 textbook, Artificial Intelligence: A Modern Approach, 2nd Edition, S. Russell
and P. Norvig, Prentice-Hall, 2002.
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Kolmogorov Probability Axioms

1. For every event A ⊂ Ω, P (A) ≥ 0.

2. P (Ω) = 1.

3. If the countable sequence of events A` are mutually exclusive, Ai∩
Aj = ∅ for i 6= j, then

P (
⋃
`

A`) =
∑
`

P (A`) .

Property (1) is the property of nonnegativity of P (·); Property (2), normalization of P (·);
and Property (3), countable additivity of P (·). That P (·) obeys P (∅) = 0 and is finitely
additivity is entailed by Properties (2) and (3).

(Kolmogorov) Probability Space. A Probability Space is a mathematical model used
to describe the behavior of the measured outcomes of a real-world phenomenon of interest.
Because it is based on the framework first proposed by Kolomogorov in the 1930’s, it would
perhaps be most informative to call it a Kolmogorov Probability Model. However, it is
commonly known simply as a Probability Space.13

(Kolmogorov) Probability Space

A Probability Space is a triple (Ω,A, P ) where

1. Ω is a sample space of outcomes.

2. A is a nonempty σ-algebra of Ω-events (subsets of Ω).

3. P (·) is a probability measure on A which satisfies the Kolmogorov
probability axioms.

3. Determination of Probabilities.

A nontrivial question, of course, is how to determine the actual numerical values, P (A),
of the probability measure as a function of the events A ∈ A. Before the advent of the
axiomatic approach, one would try to derive a probability model from a priori arguments
(e.g., “outcomes are equally likely” or “probabilities are relative frequencies”), but this could
never be put on a rigorous footing which was universally applicable.14 In the axiomatic
framework, one instead postulates that there exists a well-defined probability function, even

13It is important, however, to recognize that it is just a model and that, in fact, there are domains where
it is inadequate, or breaks down, and must be augmented or replaced. This is the case, for example, in
quantum mechanics. See, e.g., The Structure and Interpretation of Quantum Mechanics, R.I.G. Hughes,
Harvard University Press, 1989.

14For instance, the assumption of equally likely outcomes could never handle the problem of a weighted
coin or loaded die.
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if we don’t know exactly what it is, and constructs a mathematical model based on that
assumption. We then make principled choices of the probability values to be assigned to
specific events. To do so, we use intuition; experience; mathematical and physical reasoning;
symmetry arguments; and engineering custom. However the assignments are made, the
model must then be justified after the fact via testing and experimentation. Often, a few
iterations are required before an acceptable model is determined.15

Classical Probability Theory. A probability space is finite if its sample space is finite.
Classical probability theory assumes a finite probability space and equiprobable outcomes,
P (ω) = constant, ∀ω ∈ Ω. Using the probability axioms, it is easy to show that the
probability of a single outcome is 1

N
, where N = N(Ω) = #(Ω) = cardinality of Ω. An

outcome, ω, is said to be favorable to A if ω ∈ A. The number of outcomes favorable to
the event A is N(A) = #(A) = cardinality of A. Using the probability axioms it is readily
shown that the probability of the event A is

P (A) =
N(A)

N(Ω)
=

#(A)

#(Ω)
.

Thus, we see that the name of the game in classical probability theory is counting.
One needs to count the number of possible outcomes to determine N(Ω) = #(Ω) (eg, how
many total five-card deals are possible) and N(A) = #(A) (eg, how may ways can a royal
flush be dealt) before one can determine the probability of A (eg, A = {royal flush}). Not
surprisingly, then, combinatorics (the theory of counting) is an important topic in classical
probability and much time is spent developing proficiency in computing permutations and
combinations.

Permutation, Combination. A permutation is an ordered arrangement of distinct
objects. Synonymous terms are ordered sample and linear arrangement. Note
that the order of the distinct objects matters in this definition. The number of
distinct permutations (each one comprised of an ordered arrangement of distinct
objects) that one can form by selecting any possible subgroup of k distinct objects
from a larger group of n distinct objects is

P n
k = (n)k =

n!

(n− k)!
.

A combination is a collection of distinct objects without regard to order. Syn-
onymous terms are group, set, unordered sample, population, and subpopulation.
Note that the order of the distinct objects does not matter in this definition. The

15This is particularly the case in communications theory. Common questions about the random behavior
of a wireless channel are “is it Gaussian?”; “is it Rayleigh?”, “is it Rician?”, “ is it multipath?”, etc, etc,
etc.
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number of distinct collections (or subpopulations) that one can form by selecting
k distinct objects from a larger group (population) of n distinct objects is

Cn
k =

(
n
k

)
=

n!

k! (n− k)!
=

(n)k
k!

.

Relative Frequency Approach to Probability.16 Suppose that we have repeated trials
so that an experiment whose sample space is Ω is repeatedly performed under exactly the
same conditions. After n trials (repetitions of the experiment) have been performed, for any
event, A ⊂ Ω, we define n(A) to be the number of times the event A occurred. The Relative
Frequency of the Event A, fn(A), is defined to be the proportion of times that A occurred
in the n trials,

fn(A) ,
n(A)

n
.

The ‘old-fashioned’ approach to probability is based on assuming that the limit of the
measured (experimentally determined) relatively frequency of an event A exits, and can
therefore be used to define the probability of the event as

P (A) , lim
n→∞

fn(A) .

A theory of probability is then built-up around these probabilities. Note that this approach
starts from observed relative frequencies and only then moves to the development of a math-
ematical model. This is opposite to the Axiomatic Approach, which starts with an abstract
model and then proceeds to see if it can explain observed relative frequencies. The Relative
Frequency Approach fell into disfavor because of various logical difficulties associated with
it (e.g., how do we know that the relative frequencies will converge?) which do not bedevil
the Axiomatic Approach.

Axiomatic Approach to Probability. In this approach, the one which we have been
following, a self-consistent mathematical model of probability and events is constructed
based on the assumption of a few fundamental axioms. (E.g., in our case we are working
with the Kolmogorov probability space axiomatic model.) Only after the axiomatic model
has been constructed, are mathematical consequences and predictions of the model then
compared to the measured behavior of a real-world situation or system of interest. If there is
a “reasonably good” match between the model’s predicted behavior and the corresponding
measured behavior of the real-world situation, then the axiomatic model is deemed to be
an acceptable mathematical model of that situation. If the match is poor, we go back to
the drawing board and attempt to revise our model. Thus, axiomatic probability models are
justified after-the-fact, by how well they explain and predict measured real-world behavior.
Self-consistent axiomatic models themselves are neither true or false, rather they are ‘better
or worse’ in their degree of correspondence to a measured phenomenon of interest.

16Not to be confused with the ‘Relative Frequency Interpretation of Probability’ discussed subsequently.
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Relative Frequency Interpretation of Probability. Although there is little, or no,
controversy about the use of an axiomatic model of probability, there is controversy about its
interpretation when used to explain real-world phenomena of interest. So-called Frequentists
are perhaps the most conservative and accept only the Relative Frequency Interpretation
of Probability. This interpretation says that probability models can only be used to model
situations where an (potentially) unlimited number of repeated trials is possible. Frequentists
do not admit any probabilistic interpretations of so-called “one-off” events (events which only
occur one-time). The Frequency Interpretation of Probability assumes that repeated trials
can be performed so that relative frequencies can be computed. In this case, a model is
acceptable if it can be determined that whenever relative frequencies of an event A are
empirically measured we have that,

P (A) ≈ fn(A) =
n(A)

n
for n “large.”

In this case, we accept the model and go on to interpret the probability, P (B), of any
other event as the likely relative frequency of occurrence in n trials for n “large enough.”17

Equivalently, for n “large enough” we expect to find that,

n(B) ≈ n · P (B) .

For instance, suppose a patient has been told that base on the positive outcome of a
medical test he has a 10% probability of contracting a certain genetic blood disorder after
age 60. When asked what this means, he is told by his Frequentist doctor that, based
on data amassed in clinical trials, it means that of 1000 men who test positive on this
test, one can expect about 100 of them to contract the disorder after age 60. Note that
this interpretation assumes that sufficient data exists to back up such an assertion. The
Frequency Interpretation is sometimes called an Objectivist Interpretation as one tries to
justify it using objective, measured data collected from repeated trials.

Subjectivist Interpretation of Probability. So-called subjectivists go beyond the ob-
jective Frequency Interpretation of Probability and are willing to interpret probabilities in
one-off situations where there isn’t, perhaps never has been and never will be, data sufficient
to construct relative frequencies. In this case, a subjectivist interprets the probability of an
event A as a measure of his or her personal belief that the event A will occur. Not sur-
prisingly, the subjectivist interpretation is controversial, even though in practice it is used
extensively.

For example, suppose in the medical situation described above there is little or no data
available to make a frequency interpretation (e.g., perhaps only 5 people in the world have
ever even had the disease throughout history!). And suppose the doctor still tells the patient
that, in his opinion, he has a 10% probability of contracting the disease. When the patient

17This approach can be partially justified by appealing to theoretical results known as Strong Laws of
Large Numbers.
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asks what that means, the doctor says that based on his professional judgment built up from
years of looking at related ailments, it is his personal belief that the patient will likely get
the ailment is 10%. (Whatever that means!—which is why this interpretation is considered
subjective rather than objective.)

4. Manipulation of Probabilities

Inclusion-Exclusion Formula. The two-event inclusion-exclusion formula is just

P (A+B) = P (A) + P (B)− P (AB) .

Note that we “include” single events and “exclude” double events on the right-hand side of
this formula. The three-event inclusion-exclusion formula is

P (A+B + C) = P (A) + P (B) + P (C)− P (AB)− P (AC)− P (BC) + P (ABC) .

Note that here we “include” single events, “exclude” double events and “include” triple
events.

By induction one can prove the general n-event inclusion-exclusion formula,

P (A1+· · ·+An) =
∑

1≤j≤n

P (Aj) −
∑

1≤i<j≤n

P (AiAj) +
∑

1≤i<j<k≤n

P (AiAjAk) − · · · + (−1)n+1P (A1 · · ·An) .

Note that in this general formula we “include” odd-number events and “exclude” even-
number events. Each summation shown in the right-hand side of the general n-event
inclusion-exclusion formula is a sum over all distinct ways, without regard to order, that
one can select ` ≥ 1 events from the set of n-events under consideration.18 Therefore, the
number of terms in each such summation is given by

(
n
`

)
.

Almost Sure Equality of Two Events. Recall that two events (sets), A and B, are
defined to be equal if and only if they both contain exactly the same elements. A weaker
form of equality is based on treating two events as equal almost surely (or with Probability
1 ) if outcomes in A or B which are not in the intersection of A and B have zero probability
of occurring. We can present this formally as

Almost Sure Equality of Two Events

Two events A and B are said to be equal almost surely (a.s.) or with
Probability 1 (P–1), designated symbolically by

A = B a.s. ,

if and only if
P (A) = P (B) = P (AB) .

18Thus in the first term we are interested in the single (` = 1) event indexed by j, in the second term the
two events (` = 2) indexed by i and j, etc.
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The condition of almost sure equality can actually be said in a number of equivalent ways,
as shown by the following theorem.19

Equivalent Conditions for Almost Sure Equality

A = B a.s. if and only if any of the following conditions holds:

1) P (A4B) = 0.20

2) P (A+B) = P (AB).

3) A′ = B′ a.s.

Conditional Probability. If A and B are both events in (Ω,A, P ) and P (B) > 0, we
define the Conditional Probability of the Event A given the Event B, P (A |B) , by

P (A |B) =
P (AB)

P (B)
.

The conditional probability satisfies the 3 Kolmogorov Axioms required of a probability
measure on (Ω,A), so that P (A |B) is a probability in its own right (and hence the triple
(Ω,A, P (A |B)) is a probability space in its own right). Henceforth, when writing expressions
like P (G |H) it will always be tacitly assumed that P (H) > 0.

The conditional probability has the following intuitively nice properties:

a) AB = ∅ ⇒ P (A |B) = 0; b) A ⊂ B ⇒ P (A |B) ≥ P (A); and c) A ⊃ B ⇒ P (A |B) = 1.

Product Rule for Conditional Probabilities. Note from the definition of conditional
probabilities that,

P (A2A1) = P (A2 |A1) P (A1) .

Similarly,

P (A3A2A1) = P (A3 |A2A1)P (A2A1) = P (A3 |A2A1)P (A2 |A1) P (A1) .

Proceeding inductively in this manner, we have that

P (An · · ·A1) = P (An |An−1 · · ·A1) · · ·P (A3 |A2A1)P (A2 |A1) P (A1) .

This general result is known as the Product Rule for Conditional Probabilities.

19This material has been drawn from Concepts of Probability Theory, 2nd Revised Edition, Paul Pfeiffer,
Dover Publications, 1978.

20A4B = A \B +B \A is called the symmetric difference between A and B. It is also known as disjoint
union, disjunctive union, or exclusive-or. This operation is also commonly referred to as exclusive or and
denoted by A⊕B. Thus, using the exclusive-or notation, we have that A = B a.s. iff and only if P (A⊕B) = 0.
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Partition of an Event, Almost Sure Partition of a Set. Let Bi, i = 1, 2, · · · , be
a countable collection of mutually disjoint sets. This collection is defined to be a partition
of A if and only if A ⊂ B1 + B2 + · · · . Note that this is equivalent to demanding that
A(B1 + B2 + · · · )′ = ∅. If the weaker condition that P (A(B1 +B2 + · · · )′) = 0 holds, then
the collection is said to be an almost sure partition of A.21 Note that a partition must be an
almost sure partition, so that any condition which holds for an almost sure partition holds
for a partition. Also note that in particular we can take A = Ω, in which case we have
respectively a partition or an almost sure partition of the sample space Ω.

Theorem of Total Probability (TTP). Given a disjoint, countable sequence, Ai, i =
1, 2, · · · , under suitable conditions (to be discussed below) the Theorem of Total Probability
(TTP) of an event B can be invoked to yield,

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + · · · .
At the level of presentation given in most textbooks at the undergraduate level, it is

assumed that P (Ai) > 0, for all i = 1, 2, · · · . If this is the case, the TTP holds for a
particular event B if the disjoint collection, Ai, is an almost sure partition for B, and the
TTP holds for every event B if the disjoint collection is an almost sure partition of the
sample space Ω. Note that the result must therefore hold for the stronger condition that the
collection Ai is a partition.

Bayes’ Rule. Note that using the Product Rule for Conditional Probabilities, we can
expand P (AB) either by conditioning on A or by conditioning on B,

P (A |B) P (B) = P (AB) = P (B |A) P (A) .

This symmetric expansion immediately yields Bayes’ Rule,

P (B |A) =
P (A |B) P (B)

P (A)
.

P (B) is called the a priori, or prior, probability of the B, while P (B |A) is called the
a posteriori, or posterior, probability of B given the measured event A. P (A |B) is called
the likelihood of B given the measured event A, and provides “evidence” that B is the case
given the occurrence of an event A. Bayes’ rule, then, provides an evidentiary procedure for
updating one’s prior belief that B is the case (as measured by the prior probability P (B))
using “evidence” obtained from measuring a related phenomenon A. One’s updated belief
that B is the case is measured by the posterior probability P (B |A) .

If the disjoint collection, Bj, j = 1, 2, · · · , is an a.s. partition of A, then we can invoke
the TTP to write Bayes’ rule as,

P (Bi |A) =
P (A |Bi) P (Bi)∑
j

P (A |Bj) P (Bj)
for i = 1, 2, · · · .

21Or almost surely a partition, or a partition almost surely, etc..
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Independence of Events. The event A is said to be independent of the event B if and
only if,

P (A |B) = P (A) .

If A is independent of B, it is easy to show that,

P (B |A) = P (B) ,

showing that then B must be independent of A. Indeed, it is also easy to show that inde-
pendence of events A and B is equivalent to the symmetric condition,

P (AB) = P (A)P (B) ,

which clearly indicates that independence is a property which holds mutually.

It is easy to show that Ω and ∅ are independent of any event A,

P (AΩ) = P (A) = P (A) · 1 = P (A)P (Ω) ,

P (A∅) = P (∅) = 0 = P (A) · 0 = P (A)P (∅) .

We define three events A, B, and C to be an independent collection if they we satisfy
the four conditions,

P (AB) = P (A)P (B) ,

P (AC) = P (A)P (C) ,

P (BC) = P (B)P (C) ,

and
P (ABC) = P (A)P (B)P (C) .

The first three conditions holding is called pair-wise independence. The last condition is
required in addition to the first three to ensure, for example, independence of the event A
and the event BC,

P (ABC) = P (A)P (B)P (C) = P (A)P (BC) .

More generally, an collection of events Aj, j = 1, 2, · · · , is an independent collection if
and only if for any sub-collection, Aαj

, j = 1, · · · , r, r ≥ 2, we have that

P (Aα1 · · ·Aαr) = P (Aα1) · · ·P (Aαr) .

An equivalent statement is we that have an independent collection of events if and only if
each subcollection is itself an independent collection.

The following theorem is extremely useful for computing probabilities of compound
events.22

22A proof is given in Pfeiffer, op. cit., page 62.
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Subcollection Independence Property

Given a collection of events Aj, j = 1, 2, · · · , let Aαi
denote one of

the admissible event-choice possibilities Aαi
= ∅, Ω, Aαi

, or A′αi
, for

i = 1, · · · , r. Then Aj, j = 1, 2, · · · , is an independent collection if and
only Aαi

, i = 1, · · · r, is an independent collection for any admissible
event-choice for each Aαi

and for every r ≥ 2.

As a simple example of the utility of this theorem, note that independence of the collection
A, B, C, is equivalent to independence of the collection A′, B′, C ′, so that

P (A+B + C) = 1− P ((A+B + C)′)

= 1− P (A′B′C ′)

= 1− P (A′)P (B′)P (C ′)

= 1− (1− P (A)) (1− P (B)) (1− P (C)) ,

allowing the probability of the compound event A + B + C to be determined from single
event probabilities.

Let C1 and C2 both be subcollections of an independent collection assembled in the
manner described in the Subcollection Independence Property stated immediately above.
Assume that they share no events in common. Let F (C1) and G(C2) each denote an event
determined by a finite number of set operations (set unions, intersections, and complements)
on the elements of the subcollections in their arguments. Then it is a most useful fact that
F (C1) and G(C2) are independent,23

P (F (C1) G (C2)) = P (F (C1)) · P (G(C2)) .

For example, if A, B, C, D, form an independent collection then,

P ((A+D′)B4C) = P (A+D′) · P (B4C) .

23Pfeiffer, op. cit., page 83.


